SEDIMENT TRAPPING AND TRACE METAL ENRICHMENT IN FLUVIAL SCULPTED FORMS OF A BEDROCK RIVER (MIÑO RIVER, OURENSE, NW IBERIAN PENINSULA)
DOI:
https://doi.org/10.32435/xi.ibesymp.1Keywords:
Bedrock river, Trace elements, Sedimentation microenvironments, Miño River, Urban riverAbstract
This study focuses on sediment composition and trace metal accumulation in the Miño/Minho River, with an emphasis on bedrock rivers. The research employs robust non-parametric statistics to analyze sediment composition in three distinct deposition microenvironments: (i) surface sediments trapped in rock cavities, (ii) permanent sediment trapped in a pothole, and (iii) untrapped river sediment. Robust regression is used for reference level estimation. Enrichment assessment through local enrichment factors reveals Cu and Pb accumulation in rock cavities, potentially linked to post-depositional processes influenced by seasonal water dynamics. The study highlights the effectiveness of robust statistics for sediment data analysis and identifies rock cavities as significant traps for trace elements, possibly of anthropogenic origin, in urban river settings. However, the study acknowledges the necessity of further research to comprehensively understand the intricate processes shaping sediment composition in bedrock rivers, considering the multifaceted physical, chemical, and biological factors at play.
Downloads
References
ÁLVAREZ-VÁZQUEZ, M.Á.; DE UÑA-ÁLVAREZ, E.; RAMÍREZ-PÉREZ, A.M.; DE BLAS, E.; PREGO, R. Distinctive Accumulation Patterns of Trace Elements in Sediments of Bedrock Rivers (Miño River, NW Iberian Peninsula). Geosciences, v. 13, n. 10, p. 14, 2023. Available from: https://doi.org/10.3390/geosciences13100315
ÁLVAREZ VÁZQUEZ, M.Á.; DE UÑA-ALVAREZ, E.P. An exploratory study to test sediments trapped by potholes in Bedrock Rivers as environmental indicators (NW Iberian Massif). Cuaternario y Geomorfología, v. 35, n. 1-2, p. 59-77, 2021. Available from: https://doi.org/10.17735/cyg.v35i1-2.89054
ÁLVAREZ-VÁZQUEZ, M.Á.; HOŠEK, M.; ELZNICOVÁ, J.; PACINA, J.; HRON, K.; FAČEVICOVÁ, K.; TALSKÁ, R.; BÁBEK, O.; GRYGAR, T. M. Separation of geochemical signals in fluvial sediments: New approaches to grain-size control and anthropogenic contamination. Applied Geochemistry, v. 123, 2020. Available from: https://doi.org/10.1016/j.apgeochem.2020.104791
ÁLVAREZ-VÁZQUEZ, M.Á.; GONZÁLEZ-PRIETO, S.J.; PREGO, R. Possible impact of environmental policies in the recovery of a Ramsar wetland from trace metal contamination. Science of the Total Environment, v. 637-638, p. 803-812, 2018. Available from: https://doi.org/10.1016/j.scitotenv.2018.05.022
BIRCH, G.F. A review and critical assessment of sedimentary metal indices used in determining the magnitude of anthropogenic change in coastal environments. Science of the Total Environment, v. 854, 2023. Available from: https://doi.org/10.1016/j.scitotenv.2022.158129
BIRCH, G.F. Determination of sediment metal background concentrations and enrichment in marine environments–a critical review. Science of the Total Environment, v. 580, p. 813-831, 2017. Available from: https://doi.org/10.1016/j.scitotenv.2016.12.028
BIRCH, G.F.; OLMOS, M.A. Sediment-bound heavy metals as indicators of human influence and biological risk in coastal water bodies. ICES journal of Marine Science, v. 65, n. 8, p. 1407-1413, 2008. Available from: https://doi.org/10.1093/icesjms/fsn139
COVELLI, S.; FONTOLAN, G. Application of a normalization procedure in determining regional geochemical baselines: Gulf of Trieste, Italy. Environmental Geology, v. 30, p. 34-45, 1997. Available from: https://doi.org/10.1007/s002540050130
EUROPEAN COMMUNITIES. Pollutants in urban waste water and sewage sludge. Final report prepared for European Commission Directorate-General Environment. Office for Official Publications of the European Communities. Luxembourg, 2001.
GIRAUDOUX, P.; ANTONIETTI, J.P.; BEALE, C.; GROEMPING, U.; LANCELOT, R.; PLEYDELL, D.; TREGLIA, M. pgirmess: A Package for Spatial Analysis and Data Mining for Field Ecologists. R package version 2.0.2., 2022. Available from: https://CRAN.R-project.org/package=pgirmess.
FARINANGO, G.; ÁLVAREZ-VÁZQUEZ, M.Á.; PREGO, R. Trace element patterns in heterogeneous land–sea sediments: a comprehensive study of the Ulla–Arousa system (SW Europe). Geosciences, v. 13, n. 10, 2023. Available from: https://doi.org/10.3390/geosciences13100292
GRYGAR, T.M.; MACH, K.; HRON, K.; FAČEVICOVÁ, K.; MARTINEZ, M.; ZEEDEN, C.; SCHNABL, P. Lithological correction of chemical weathering proxies based on K, Rb, and Mg contents for isolation of orbital signals in clastic sedimentary archives. Sedimentary Geology, v. 406, 2020. Available from: https://doi.org/10.1016/j.sedgeo.2020.105717
GRYGAR, T.M.; POPELKA, J. Revisiting geochemical methods of distinguishing natural concentrations and pollution by risk elements in fluvial sediments. Journal of Geochemical Exploration, v. 170, p. 39-57, 2016. Available from: https://doi.org/10.1016/j.gexplo.2016.08.003
GRYGAR, T.M.; NOVÁKOVÁ, T.; BÁBEK, O.; ELZNICOVÁ, J.; VADINOVÁ, N. Robust assessment of moderate heavy metal contamination levels in floodplain sediments: A case study on the Jizera River, Czech Republic. Science of the Total Environment, v. 452-453, p. 233-245, 2013. Available from: https://doi.org/10.1016/j.scitotenv.2013.02.085
HERUT, B.; SANDLER, A. Normalization methods for pollutants in marine sediments: review and recommendations for the Mediterranean. IOLR Report H18/2006. Israel Oceanographic & Limnological Research. Available from: https://www.sednet.org/download/0604_herut_and_sandler_report.pdf. Accessed on: 15 December 2023.
LORING, D. Normalization of heavy-metal data from estuarine and coastal sediments. ICES Journal of Marine Science, v. 48, n. 1, p. 101-115, 1991. Available from: https://doi.org/10.1093/icesjms/48.1.101
MAECHLER, M.; ROUSSEEUW, P.; CROUX, C.; TODOROV, V.; RUCKSTUHL, A.; SALIBIAN-BARRERA, M.; VERBEKE, T.; KOLLER, M.; CONCEICAO, E.L.T.; DI PALMA, M.A. Robustbase: Basic Robust Statistics, R package version 0.9-11, 2022. Available from: https://CRAN.R-project.org/package=robustbase.
MILLER, J.R.; WATKINS, X.; O’SHEA, T.; ATTERHOLT, C. Controls on the Spatial Distribution of Trace Metal Concentrations along the Bedrock-Dominated South Fork New River, North Carolina. Geosciences, v. 11, n. 12, 2021. Available from: https://doi.org/10.3390/geosciences11120519
NOVÁKOVÁ, T.; MATYS GRYGAR, T.; KOTKOVÁ, K.; ELZNICOVÁ, J.; STRNAD, L.; MIHALJEVIČ, M. Pollution assessment using local enrichment factors: the Berounka River (Czech Republic). Journal of Soils and Sediments, v. 16, p. 1081-1092, 2016. Available from: https://doi.org/10.1007/s11368-015-1315-z
OPENAI. ChatGPT 3.5. 2023. Available from: https://www.openai.com/.
R CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2023. Available from: https://www.R-project.org/.
TUROWSKI, J.M.; HOVIUS, N.; WILSON, A.; HORNG, M.J. Hydraulic geometry, river sediment and the definition of bedrock channels. Geomorphology, v. 99, n. 1-4, p. 26-38, 2008. Available from: https://doi.org/10.1016/j.geomorph.2007.10.001
WALLACE, R.B.; GOBLER, C.J. The role of algal blooms and community respiration in controlling the temporal and spatial dynamics of hypoxia and acidification in eutrophic estuaries. Marine Pollution Bulletin, v. 172, 2021. Available from: https://doi.org/10.1016/j.marpolbul.2021.112908
WHIPPLE, K.X.; DIBIASE, R.A.; CROSBY, B.; JOHNSON, J.P. Bedrock rivers. In Treatise on Geomorphology. Elsevier, v. 6.2, p. 865-903, 2002. Available from: https://doi.org/10.1016/B978-0-12-818234-5.00101-2
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Miguel Ángel Álvarez-Vázquez, Andrian Bróż
This work is licensed under a Creative Commons Attribution 4.0 International License.
The copyright for manuscripts published in Environmental Smoke belongs to the author, with first publication rights for the journal. The published articles are of total and exclusive responsibility of the authors.
Funding data
-
Universidade de Vigo
Grant numbers INOU15-02