HEAVY METALS IN SEDIMENTS OF TWO NEOTROPICAL ESTUARIES AND USE OF BRAIN ACETYLCHOLINESTERASE FROM THREE FISH SPECIES AS A BIOMARKER

Authors

  • Mikele Cândida Sousa De Sant’Anna Federal University of Maranhão (UFMA), Coordination of the Post-Graduate Programme in Aerospace Engineering (PPGAERO), São Luís, Maranhão, Brasil https://orcid.org/0000-0002-9023-0154
  • Elida Virna Rodrigues Barbosa Federal University of Maranhão (UFMA), Research Center for Bioeconomy, Environment, Innovation, Intelligence, Technology, Education and Health (BAITES), São Luís, Maranhão, Brasil https://orcid.org/0009-0009-4005-762X
  • Maria Priscila Sá Matos Ribeiro Federal University of Maranhão (UFMA), Research Center for Bioeconomy, Environment, Innovation, Intelligence, Technology, Education and Health (BAITES), São Luís, Maranhão, Brasil https://orcid.org/0009-0008-1099-3217
  • Ranilson de Souza Bezerra Federal University of Pernambuco (UFPE), Center for Biological Sciences (CB), Department of Biochemistry and Biophysics (DBR), Recife, Pernambuco, Brasil
  • Danilo Francisco Corrêa Lopes Federal University of Maranhão (UFMA), Research Center for Bioeconomy, Environment, Innovation, Intelligence, Technology, Education and Health (BAITES), São Luís, Maranhão, Brasil https://orcid.org/0000-0001-8711-3881

DOI:

https://doi.org/10.32435/envsmoke-2026-0004

Keywords:

Acetylcholinesterase, Biomarkers, Heavy metals, Environmental impact

Abstract

This study aimed to assess the levels of heavy metals (As³⁺, Cd²⁺, Cu²⁺, Hg²⁺, Pb²⁺ and Zn²⁺) in the sediments of two neotropical estuarine complexes (Santa Cruz Channel and Sirinhaém River) and to investigate the effect of these concentrations on the activity of Acetylcholinesterase (AChE) in the brains of Centropomus undecimalis, Diapterus auratus and Diapterus rhombeus, during the dry and rainy seasons. For each site and seasonal period, sediment samples were collected, and five individuals of each species were acquired from artisanal fishermen. Cu and Zn were determined by neutron activation, while Hg was analyzed by atomic absorption spectrometry with cold vapor generation; Cd and Pb were quantified by atomic absorption spectrometry with electrothermal atomization. Brain AChE activity levels were measured in the three species. The enzyme's activity was lowest in the dry season, coinciding with the highest concentrations of Hg, which exceeded the limits established by current legislation. These results indicate that the mercury in the sediments has been affecting the species' neurophysiology, constituting a relevant environmental impact with potential implications for human health due to bioaccumulation and consumption of these fish. The variation in AChE activity proved sensitive to seasonal Hg concentrations, highlighting its potential as a biomarker for environmental monitoring of this metal.

Downloads

Download data is not yet available.

Author Biographies

  • Mikele Cândida Sousa De Sant’Anna, Federal University of Maranhão (UFMA), Coordination of the Post-Graduate Programme in Aerospace Engineering (PPGAERO), São Luís, Maranhão, Brasil

    1Federal University of Maranhão (UFMA), Coordination of the Post-Graduate Programme in Aerospace Engineering (PPGAERO), Cidade Universitária Dom Delgado, Avenida dos Portugueses, 1966, Vila Bacanga, 65080-805 São Luís, Maranhão, Brasil

    2Federal University of Maranhão (UFMA), Research Center for Bioeconomy, Environment, Innovation, Intelligence, Technology, Education and Health (BAITES), 65085-580 São Luís, Maranhão, Brasil

  • Elida Virna Rodrigues Barbosa, Federal University of Maranhão (UFMA), Research Center for Bioeconomy, Environment, Innovation, Intelligence, Technology, Education and Health (BAITES), São Luís, Maranhão, Brasil

    Federal University of Maranhão (UFMA), Research Center for Bioeconomy, Environment, Innovation, Intelligence, Technology, Education and Health (BAITES), 65085-580 São Luís, Maranhão, Brasil

  • Maria Priscila Sá Matos Ribeiro, Federal University of Maranhão (UFMA), Research Center for Bioeconomy, Environment, Innovation, Intelligence, Technology, Education and Health (BAITES), São Luís, Maranhão, Brasil

    Federal University of Maranhão (UFMA), Research Center for Bioeconomy, Environment, Innovation, Intelligence, Technology, Education and Health (BAITES), 65085-580 São Luís, Maranhão, Brasil

  • Ranilson de Souza Bezerra, Federal University of Pernambuco (UFPE), Center for Biological Sciences (CB), Department of Biochemistry and Biophysics (DBR), Recife, Pernambuco, Brasil

    Federal University of Pernambuco (UFPE), Center for Biological Sciences (CB), Department of Biochemistry and Biophysics (DBR), Avenida Reitor Joaquim Amazonas, Cidade Universitária, 50740-570 Recife, Pernambuco, Brasil

  • Danilo Francisco Corrêa Lopes, Federal University of Maranhão (UFMA), Research Center for Bioeconomy, Environment, Innovation, Intelligence, Technology, Education and Health (BAITES), São Luís, Maranhão, Brasil

    1Federal University of Maranhão (UFMA), Research Center for Bioeconomy, Environment, Innovation, Intelligence, Technology, Education and Health (BAITES), 65085-580 São Luís, Maranhão, Brasil

    2Federal University of Maranhão (UFMA), Coordination of the Post-Graduate Programme in Transportation Engineering, Avenida dos Portugueses, 1966, Vila Bacanga, 65080-805 São Luís, Maranhão, Brasil

References

AHMAD, A.; IMRAN, M.; AHSAN, H. Biomarkers as Biomedical Bioindicators: Approaches and Techniques for the Detection, Analysis, and Validation of Novel Biomarkers of Diseases. Pharmaceutics, v. 15, n. 6, p. 1630, 2023. Available from: https://doi.org/10.3390/pharmaceutics15061630

ALBUQUERQUE, F.E.A.; HERRERO-LATORRE, C.; MIRANDA, M.; JÚNIOR, R.A.B; OLIVEIRA, F.L.C.; SUCUPIRA, M.C.; LOPEZ-ALONSO, M. Fish tissues for biomonitoring toxic and essential trace elements in the Lower Amazon. Environmental Pollution, v. 283, p. 117024, 2021. Available from: https://doi.org/10.1016/j.envpol.2021.117024

ALI, H.; KHAN, E.; ILAHI, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, article 6730305, 2019. Available from: https://doi.org/10.1155/2019/6730305

AMIN, M.; YOUSUF, M.; AHMAD, N.; ATTAULLAH, M.; AHMAD, S.; ZEKKER, I.; LATIF, M.; ZEB, A.; ILAHI, I.; HADI, F.; ULLAH, U.; BUNERI, I. D.; IKRAM, M.; NABI, G.; AZRA, M. N. Response of metabolic enzymes glutamic oxaloacetate transaminase and glutamate pyruvate transaminase in vivo exposed Oreochromis niloticus against organophosphates and synthetic pyrethroid. Aquatic Ecosystem Health & Management, v. 26, p. 68–78, 2023. Available from: https://.doi.org/10.14321/aehm.026.01.68

ARAÚJO, M.C.; ASSIS, C.R.D.; SILVA, K.C.C.; MACHADO, D.C.; LIMA, A.V.A.; CARVALHO JÚNIOR, L.B.; BEZERRA, R.B.; OLIVEIRA, M.B.M. Brain acetylcholinesterase of jaguar cichlid (Parachromis managuensis): From physicochemical and kinetic properties to its potential as biomarker of pesticides and metal ions. Aquatic Toxicology, v. 177, p. 182–189, 2016. Available from: https://doi.org/10.1016/j.aquatox.2016.05.019

ARAÚJO, M.C.; ASSIS, C.R.D.; SILVA, K.C.C.; SOUZA, K.S.; AZEVEDO, R.S.; ALVES, M.H.E.; OLIVEIRA, M.B.M. Characterization of brain acetylcholinesterase of bentonic fish Hoplosternum littorale: Perspectives of application in pesticides and metal ions biomonitoring. Aquatic Toxicology, v. 205, p. 213–226, 2018. Available from: https://doi.org/10.1016/j.aquatox.2018.10.017

ASSIS, C.R.D.; CASTRO, P.F.; AMARAL, I.P.G.; CARVALHO, M.E.V.M.; CARVALHO JR., L.B.; BEZERRA, R.S. Characterization of acetylcholinesterase from the brain of the Amazonian tambaqui (Colossoma macropomum) and in vitro effect of organophosphorus and carbamate pesticides. Environmental Toxicology and Chemistry, v. 29, n. 10, p. 2243–2248, 2010. Available from: https://doi.org/10.1002/etc.272

ASSIS, C.R.D.; LINHARES, A.G.; CABRERA, M.P.; OLIVEIRA, V.M.; SILVA, K.C.C.; MARCUSCHI, M.; CARVALHO, E.V.M.M.; BEZERRA, R.S.; CARVALHO Jr, L.B. 2018. Erythrocyte acetylcholinesterase as biomarker of pesticide exposure: new and forgotten insights. Environmental Science and Pollution Research, v. 25, p. 18364–18376. https://doi.org/10.1007/s11356-018-2303-9

ASSIS, C.R.D.; LINHARES, A.G.; OLIVEIRA, V.M.; FRANÇA, R.C.P.; SANTOS, J.F.; MARCUSCHI, M.; MACIEL CARVALHO, E.V.M. Characterization of catalytic efficiency parameters of brain cholinesterases in tropical fish. Fish Physiology and Biochemistry, v. 40, n. 6, p. 1659–1668, 2014. Available from: https://doi.org/10.1007/s10695-014-9956-1

BACCHI, M.A.; FERNANDES, E.A.N. Quantu-design and development of a software package dedicated to k0-standardized NAA. Journal of Radioanalytical and Nuclear Chemistry, v. 257, n. 3, p. 577-582, 2003. Available from: https://doi.org/10.1023/a:1025496716711

BANCEL, S.; CACHOT, J.; BON, C.; ROCHARD, É.; GEFFARD, O. A critical review of pollution active biomonitoring using sentinel fish: challenges and opportunities. Environmental Pollution, v. 360, article 124661, 2024. Available from: https://doi.org/10.1016/j.envpol.2024.124661

BARBOZA, L.G.A.; VIEIRA, L.R.; GUILHERMINO, L. Single and combined effects of microplastics and mercury on juveniles of the European seabass (Dicentrarchus labrax): changes in behavioural responses and reduction of swimming velocity and resistance time. Environmental Pollution, v. 236, p. 1014–1019, 2018. Available from: https://doi.org/10.1016/j.envpol.2017.12.082

BERNTSSEN, M.H.G.; HYLLAND, K.; JULSHAMN, K.; LUNDEBYE, A.K.; WAAGBO, R. Maximum limits of organic and inorganic mercury in fish feed. Aquaculture Nutrition, v. 10, p. 83–97, 2004. Available from: https://doi.org/10.1046/j.1365-2095.2003.00282.x

BODE, P. Instrumental and organizational aspects of a neutron activation analysis laboratory. 1996. 251 pp. PhD Thesis (Doctor in Radiochemistry) — Interfacultair Reactor Instituut, Technische Universiteit Delft [Delft University of Technology], Delft, 1996. Available from: https://repository.tudelft.nl/record/uuid:438b9110-fb94-4015-b277-1c5fba96ac71. Accessed on: 30 Mar. 2025.

BRAGA, R.A.P. 1986. Caracterização preliminar da zona estuarina de Barra de Sirinhaém. Recife: Companhia Pernambucana do Meio Ambiente (CPRH), Relatório de Pesquisa. Available from: http://www.cprh.pe.gov.br/central_servicos/centro_documentacao_informacao_ambiental/impressos/39745%3B39641%3B020712%3B0%3B0.asp. Accessed on: 30 Mar. 2025.

CHOU, C.L. Aquaculture-related trace metals in sediments and lobsters and relevance to environmental monitoring program ratings for nearfield effects. Marine Pollution Bulletin, v. 44, p. 1259–1268, 2002. Available from: https://doi.org/10.1016/S0025-326X(02)00219-9

CONAMA (Conselho Nacional do Meio Ambiente). Resolution nº 454, Brasília: Ministério do Meio Ambiente. 2012. Available from: https://www.cbhdoce.org.br/wp-content/uploads/2018/08/454.pdf. Accessed on: 30 Mar. 2025.

CPRH. Diagnóstico socioambiental do litoral norte de Pernambuco. Companhia Pernambucana do Meio Ambiente. Governo de Pernambuco. Recife: CPRH/GERCO, 2003. Available from: http://www.cprh.pe.gov.br/central_servicos/centro_documentacao_informacao_ambiental/central_downloads/39749;34001;020709;0;0.asp. Accessed on: 30 Mar. 2025.

CROWTHER, E.R.; DEMERS, J.D.; BLUM, J.D.; BROOKS, S.C.; JOHNSON, M.W. Use of sequential extraction and mercury stable isotope analysis to assess remobilization of sediment-bound legacy mercury. Environmental Science: Processes & Impacts, v. 23, n. 5, p. 756–775, 2021. Available from: https://doi.org/10.1039/D1EM00019E

DE SOUZA, P.R.; DE SOUZA, K.S.; DE ASSIS, C.R.D.; DE ARAÚJO, M.C.; SILVA, K.C.C.; DA SILVA, J.F.X.; FERREIRA, A.C.M.; DA SILVA, V.L.; ADAM, M.L.; DE CARVALHO Jr., L.B.; BEZERRA, R.S. Acetylcholinesterase of mangrove oyster Crassostrea rhizophorae: A highly thermostable enzyme with promising features for estuarine biomonitoring. Aquatic Toxicology, v. 197, p. 109-121, 2018. Available from: https://doi.org/10.1016/j.aquatox.2018.02.008

DO CARMO, C.A.; ABESSA, D.M.S.; MACHADO NETO, J.G. Metals in water, sediments and fish collected in São Vicente-SP estuary, Brazil. O Mundo da Saúde, v. 35, n. 1, p. 64-70, 2011. Available from: https://pesquisa.bvsalud.org/gim/resource/enauMartinsNetoViviana/lil-619110. Accessed on: 30 Mar. 2025.

DOS SANTOS, G.P.C.; DE ASSIS, C.R.D.; OLIVEIRA, V.M.; CAHU, T.B.; SILVA, V.L.; SANTOS, J.F.; YOGUI, G.T.; BEZERRA, R.S. Acetylcholinesterase from the charru mussel Mytella charruana: Kinetic characterization, physicochemical properties and potential as in vitro biomarker in environmental monitoring of mollusk extraction areas. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, v. 252, article 109225, 2022. Available from: https://doi.org/10.1016/j.cbpc.2021.109225

DOS SANTOS, H.D.A.G.; KITAMURA, R.S.A.; SOARES, G.D.C.B.; DOS SANTOS, M.P.; DE SOUZA MIRANDA, L.P.; MELA, M.; DE ASSIS, H.C.S. Assessing the water quality in a World Heritage Site using biomarkers in top fish predators. Science of the Total Environment, v. 927, article 172072, 2024. Available from: https://doi.org/10.1016/j.scitotenv.2024.172072

FAO (Food and Agriculture Organization of the United Nations). Pesticide residues in food 2007. Joint FAO/WHO Meeting on Pesticide Residues. FAO Plant Production and Protection Paper 191. Rome: FAO/WHO, 2007. Available from: https://www.fao.org/4/a1556e/a1556e00.pdf. Accessed on: 30 Mar. 2025.

HENRIQUES, M.C.; CARVALHO, I.; SANTOS, C.; HERDEIRO, M.T.; FARDILHA, M.; PAVLAKI, M.D.; LOUREIRO, S. Unveiling the molecular mechanisms and developmental consequences of mercury (Hg) toxicity in zebrafish embryo-larvae: A comprehensive approach. Neurotoxicology and Teratology, v. 100, p. 107302, 2023. Available from: https://doi.org/10.1016/j.ntt.2023.107302

KHASHROUM, A. Heavy metals residues in fish meat: review. University of Thi-Qar Journal of Agricultural Research, v. 13, n. 2, p. 115–126, 2024. Available from: https://doi.org/10.54174/sxm6xa27

KHUSHBU; GULATI, R.; SUSHMA; KOUR, A.; SHARMA, P. Ecological impact of heavy metals on aquatic environment with reference to fish and human health. Journal of Applied and Natural Science, v. 14, n. 4, p. 1471–1484, 2022. Available from: https://doi.org/10.31018/jans.v14i4.3900

LACERDA, L.D.; DIAS, F.J.; MARINS, R.V.; SOARES, T.M.; GODOY, J.M.O.; GODOY, M.L.D. Pluriannual watershed discharges of Hg into a tropical semi-arid estuary of the Jaguaribe River, NE Brazil. Journal of the Brazilian Chemical Society, v. 24, n. 11, p. 1719–1731, 2013. Available from: https://doi.org/10.5935/0103-5053.20130216

LIMA, A.C.G.; MOTTA, M.; SILVA, V.L.; SILVA, M.C.L.; FERREIRA, J.M. Quality monitoring and assessment of mercury contamination on water and sediments of the Botafogo River, PE, Brazil. Ambiente e Agua - An Interdisciplinary Journal of Applied Science, v. 4, n. 2, p. 156-171, 2009. Available from: https://www.ambi-agua.net/seer/index.php/ambi-agua/article/view/218. Accessed on: 30 Mar. 2025.

LIRA, L. Diagnóstico socioeconômico da pesca artesanal do litoral de Pernambuco/Litoral Norte. Vol. IV. Recife: Oceanography Institute of Pernambuco, Federal Rural University of Pernambuco, 2010. Available from: https://pt.scribd.com/document/66272111/Volume-I-Diagnostico-Socioeconomico-da-Pesca-Artesanal-do-Litoral-de-Pernambuco. Accessed on: 30 Mar. 2025.

LIRA, L.; FONSECA, V.G. Composição e distribuição faciológica do estuário do Rio Formoso-PE. Anais da Universidade Federal Rural de Pernambuco, v. 5, p. 77-104, 1980. Available from: https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Composi%C3%A7%C3%A3o+e+distribui%C3%A7%C3%A3o+faciol%C3%B3gica+do+estu%C3%A1rio+do+Rio+Formoso+-+PE&btnG=. Accessed on: 30 Mar. 2025.

LIRA, A.S.; LUCENA, F.F.; VIANA, A.P.; EDUARDO, L.N.; FRÉDOU, T. Feeding ecology of Centropomus undecimalis (Bloch, 1792) and Centropomus parallelus (Poey, 1860) in two tropical estuaries in Northeastern Brazil. Pan-American Journal of Aquatic Sciences, v. 12, n. 2, p. 123-135, 2017. Available from: https://panamjas.org/artigos.php?id_publi=218. Accessed on: 30 Mar. 2025.

LOPES, D.F.C.; DE ASSIS, C.R.D.; DE SANT’ANNA, M.C.S.; DA SILVA, J.F.; BEZERRA, R.S.; FRÉDOU, F.L. Brain acetylcholinesterase of three Perciformes: From the characterization to the in vitro effect of metal ions and pesticides. Ecotoxicology and Environmental Safety, v. 173, p. 494–503, 2019. Available from: https://doi.org/10.1016/j.ecoenv.2019.02.047

MAO, R.; ZHANG, Y.; SONG, J.; TANG, B.; GUAN, M. The competition of heavy metals between hyporheic sediments and microplastics of driving factors in the Beiluo River Basin. Journal of Hazardous Materials, 2024. Available from: https://doi.org/10.1016/j.jhazmat.2024.134538

MARINS, R.V.; PAULA FILHO, F.J.; MAIA, S.R.R.; LACERDA, L.D.; MARQUES, W.S. Total mercury distribution as a proxy of urban and industrial pollition along the Brazilian coast. Química Nova, v. 27, n. 5, p. 763-770, 2004. Available from: https://doi.org/10.1590/S0100-40422004000500016

MÉRIGOT, B.; FRÉDOU, F.L.; VIANA, A.P.; FERREIRA, B.P.; COSTA JUNIOR, E.N.; SILVA JÚNIOR, C.A.B.; FRÉDOU, T. Fish assemblages in tropical estuaries of northeast Brazil: A multi-component diversity approach. Ocean & Coastal Management, v. 143, p. 175-183, 2017. Available from: http://dx.doi.org/10.1016/j.ocecoaman.2016.08.004

MEYER, U. On the fate of mercury in the Northeastern Brazilian mangrove system, Canal de Santa Cruz, Pernambuco. 1996. 105 pp. PhD Thesis (Doctor in Tropical Marine Ecology) — Zentrum fur Marine TropenöKologie [Center for Tropical Marine Ecology], University of Bremen, ZMT-Contributions 3, Bremen, Germany, 1996. Available from: https://scholar.google.com/scholar_lookup?&title=On%20the%20fate%20of%20mercury%20in%20the%20northeastern%20Brazilian%20mangrove%20system%20Canal%20de%20Santa%20Cruz%2C%20Pernambuco.%20ZMT-Contributions&publication_year=1996&author=Meyer%2CU. Accessed on: 30 Mar. 2025.

MILLARD, G.; ECKLEY, C.S.; LUXTON, T.P.; KRABBENHOFT, D.; GOETZ, J.; MCKERNAN, J.; DEWILD, J. Evaluating the influence of seasonal stratification on mercury methylation rates in the water column and sediment in a contaminated section of a western U.S.A. reservoir. Environmental Pollution, v. 316, article 120485, 2023. Available from: https://doi.org/10.1016/j.envpol.2022.120485

MOURA, V.L.; DE LACERDA, L.D. Mercury Sources, Emissions, Distribution, and Bioavailability along an Estuarine Gradient under Semiarid Conditions in Northeast Brazil. International Journal of Environmental Research and Public Health, v. 19, n. 24, article 17092, 2022. Available from: https://doi.org/10.3390/ijerph192417092

NANINI-COSTA, M.H.; QUINÁGIA, G.A.; HELD, B.; PETESSE, M.L.; ESTEVES, K.E. Total mercury bioaccumulation in Platanichthys platana (Regan, 1917), an invasive zooplanktivorous fish in the Billings Complex (Alto Tietê, SP). Boletim do Instituto de Pesca, v. 42, n. 3, p. 674–690, 2016. Available from: https://doi.org/10.20950/1678-2305.2016v42n3p674

NUNES, B.; PAIXÃO, L.; NUNES, Z.; AMADO, L.; FERREIRA, M.A.; ROCHA, R. Use of biochemical markers to quantify the toxicological effects of metals on the fish Sciades herzbergii: potential use to assess the environmental status of Amazon estuaries. Environmental Science and Pollution Research, v. 27, p. 30789–30799, 2020. Available from: https://doi.org/10.1007/s11356-020-09362-3

PASQUAL, O.; RATHNAYAKE, A.; THIRIPURANATHAR, G.; EKANAYAKE, S. Main inorganic pollutants and their risk to living beings. In: TONELLI, F.M.P.; ROY, A.; OZTURK, M.; MURTHY, H.C.A. (Ed.). Nanotechnology-based sensors for detection of environmental pollution. Amsterdam: Elsevier, 2024. p. 11–38. Available from: https://doi.org/10.1016/b978-0-443-14118-8.00002-4

PRABAKARAN, K.; ESWARAMOORTHI, S.; NAGARAJAN, R.; ANANDKUMAR, A.; FRANCO, F.M. Geochemical behaviour and risk assessment of trace elements in a tropical river, Northwest Borneo. Chemosphere, v. 252, article 126430, 2020. Available from: https://doi.org/10.1016/j.chemosphere.2020.126430

RAY, S.; VASHISHTH, R. From water to plate: Reviewing the bioaccumulation of heavy metals in fish and unraveling human health risks in the food chain. Emerging Contaminants, p. 100358, 2024. Available from: https://doi.org/10.1016/j.emcon.2024.100358

SEDMAK, J.J.; GROSSBERG, S.E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Analytical Biochemistry, v. 79, n. 1–2, p. 544-552, 1977. Available from: https://doi.org/10.1016/0003-2697(77)90428-6

SHARMA, P.; DUTTA, D.; UDAYAN, A.; NADDA, A.K.; LAM, S.S.; KUMAR, S. Role of microbes in bioaccumulation of heavy metals in municipal solid waste: Impacts on plant and human being. Environmental Pollution, v. 305, n. 1, p. 119248–119279, 2022. Available from: https://doi.org/10.1016/j.envpol.2022.119248

SILVA-JÚNIOR, C.A.B.; MÉRIGOT, B.M.; FREDOU, F.L.; FERREIRA, B.P.; COXEY, M.S.; REZENDE, S.M.; FREDOU, T. Functional diversity of fish in tropical estuaries: A traits-based approach of communities in Pernambuco, Brazil. Coastal and Shelf Science, p. 1–8, 2016. Available from: http://dx.doi.org/10.1016/j.ecss.2016.08.030

SINGH, V. Water pollution. In: SINGH, V. (Ed.). Textbook of Environment and Ecology. Singapore: Springer Nature Singapore Pte, 2024. p. 253–266. Available from: https://doi.org/10.1007/978-981-99-8846-4_17

SOLIMAN, N.F.; YOUNIS, A.M.; ELKADY, E. Chemical speciation and comprehensive risk assessment of metals in sediments from Nabq protectorate, the Red Sea using individual and synergistic indices. Marine Pollution Bulletin, v. 201, article 116219, 2024. Available from: https://doi.org/10.1016/j.marpolbul.2024.116219

TEMÓTEO, T.A.A. Caracterização do hábito alimentar das espécies do gênero Diapterus no complexo estuarino Itapissuma/Itamaracá. In: JORNADA DE ENSINO, PESQUISA E EXTENSÃO DA UFRPE, 15., 2015, Recife. Anais […], Recife: UFRPE, 2015. Available from: https://scholar.google.com/scholar?hl=pt-BR&as_sdt=0%2C5&q=Caracteriza%C3%A7%C3%A3o+do+h%C3%A1bito+alimentar+das+esp%C3%A9cies+do+g%C3%AAnero+Diapterus+no+complexo+estuarino+Itapissuma%2FItamarac%C3%A1&btnG=. Accessed on: 30 Mar. 2025.

WANG, J.; TENG, Y.; ZHAI, Y.; YUE, W.; PAN, Z. Spatiotemporal distribution and risk assessment of organophosphorus pesticides in surface water and groundwater on the North China Plain, China. Environmental Research, v. 204, article 112310, 2022. Available from: https://doi.org/10.1016/j.envres.2021.112310

WU, Y.S.; OSMAN, A.I.; HOSNY, M.; ELGARAHY, A.M.; ELTAWEIL, A.S.; ROONEY, D.W.; CHEN, Z.; RAHIM, N.S.; SEKAR, M.; GOPINATH, S.C.B.; RANI, N.N.I.M.; BATUMALAIE, K.; YAP, P.S. The toxicity of mercury and its chemical compounds: molecular mechanisms and environmental and human health implications: a comprehensive review. ACS Omega, v. 9, n. 5, p. 5100–5126, 2024. Available from: https://doi.org/10.1021/acsomega.3c07047

YIN, J.; CHENG, L.; JIANG, X.; WANG, L.; GAO, P.; ZHONG, W.; ZHANG, X. Metals levels and human health risk assessment in eight commercial fish species were collected from a market in Wuhan, China. Frontiers in Sustainable Food Systems, v. 8, article 1346389, 2024. Available from: https://doi.org/10.3389/fsufs.2024.1346389

ZHANG, H.; ZHAO, Y.; WANG, Z.; LIU, Y. Distribution characteristics, bioaccumulation and trophic transfer of heavy metals in the food web of grassland ecosystems. Chemosphere, v. 278, article 130407, 2021a. Available from: https://doi.org/10.1016/j.chemosphere.2021.130407

ZHANG, Y.; SONG, Z.; HUANG, S.; ZHANG, P.; PENG, Y.; WU, P.; GU, J.; DUTKIEWICZ, S.; ZHANG, H.; WU, S.; WANG, F.; CHEN, L.; WANG, S.; LI, P. Global health effects of future atmospheric mercury emissions. Nature Communications, v. 12, article 3035, 2021b. Available from: https://doi.org/10.1038/s41467-021-23391-7

Downloads

Published

2026-02-19

Issue

Section

Full Articles

How to Cite

HEAVY METALS IN SEDIMENTS OF TWO NEOTROPICAL ESTUARIES AND USE OF BRAIN ACETYLCHOLINESTERASE FROM THREE FISH SPECIES AS A BIOMARKER. (2026). Environmental Smoke, 9, 01-13. https://doi.org/10.32435/envsmoke-2026-0004