ANÁLISE EXPERIMENTAL E NUMÉRICA DE DIFERENTES FILTROS DE CIGARRO COM CAVIDADES ESPECIAIS PARA ADSORÇÃO TÍPICA NO FLUXO DE FUMAÇA

Views: 38

Autores

  • Zhi Huang China Tobacco Chongqing Industrial Company Limited, Nanan 400060, Chongqing, China
  • Hua Liu China Tobacco Chongqing Industrial Company Limited, Nanan 400060, Chongqing, China
  • Kangzhong Shi Eastman Shuangwei Fibers Company Limited, Hefei 230601, Anhui, China
  • Jiuyi Liu School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
  • Ying Zhao Eastman Shuangwei Fibers Company Limited, Hefei 230601, Anhui, China
  • Qun Yin Eastman Shuangwei Fibers Company Limited, Hefei 230601, Anhui, China
  • Mengdie Cai School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China https://orcid.org/0000-0002-7605-4895
  • Lisheng Guo School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
  • Song Sun School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China

DOI:

https://doi.org/10.32435/envsmoke-2025-0005

Palavras-chave:

Fibra de acetato, Haste de filtro de cavidade com formato especial, Componentes do fluxo de fumaça, Interceptação

Resumo

As hastes de filtro de cigarro, como um componente essencial dos cigarros, filtram e retêm eficazmente as substâncias nocivas presentes na fumaça. Com a aplicação contínua de tecnologias avançadas de fabricação na produção de hastes de filtro, vários formatos de hastes de filtro foram desenvolvidos. Portanto, compreender a adsorção do fluxo de fumaça nas hastes de filtro é benéfico para reduzir os efeitos tóxicos do tabagismo na saúde humana e controlar o design das hastes de filtro. Diferentes hastes de filtro com cavidades de formato especial são escolhidas para investigar a influência da estrutura oca na eficiência de interceptação de cigarros por meio da técnica DRIFTS. Os resultados mostraram que a eficiência de interceptação da haste de filtro em formato de C para a maioria dos gases de combustão típicos é comparável à de uma haste de filtro normal e muito superior à da haste de filtro com cavidade em formato quadrado. Combinado com os resultados da simulação do campo de fluxo da Dinâmica de Fluidos Computacional, pode-se observar que o fluxo de gás na área em forma de C exibe um efeito de turbilhão da extremidade menor para a maior da seção transversal em forma de C na área oca, fornecendo base teórica e suporte experimental para o desenvolvimento de materiais de filtro eficientes, que ajudarão a melhorar a segurança dos produtos de tabaco e reduzir os danos do tabagismo à saúde humana.

Downloads

Não há dados estatísticos.

Biografia do Autor

Zhi Huang, China Tobacco Chongqing Industrial Company Limited, Nanan 400060, Chongqing, China

China Tobacco Chongqing Industrial Company Limited, Nanan 400060, Chongqing, China

Hua Liu, China Tobacco Chongqing Industrial Company Limited, Nanan 400060, Chongqing, China

China Tobacco Chongqing Industrial Company Limited, Nanan 400060, Chongqing, China

Kangzhong Shi, Eastman Shuangwei Fibers Company Limited, Hefei 230601, Anhui, China

Eastman Shuangwei Fibers Company Limited, Hefei 230601, Anhui, China

Jiuyi Liu, School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China

School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China

Ying Zhao, Eastman Shuangwei Fibers Company Limited, Hefei 230601, Anhui, China

Eastman Shuangwei Fibers Company Limited, Hefei 230601, Anhui, China

Qun Yin, Eastman Shuangwei Fibers Company Limited, Hefei 230601, Anhui, China

Eastman Shuangwei Fibers Company Limited, Hefei 230601, Anhui, China

Mengdie Cai, School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China

School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China

Lisheng Guo, School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China

School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China

Song Sun, School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China

School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China

Referências

ADAM, T.; MCAUGHEY, J.; MOCKER, C. MCGRATH, C.; ZIMMERMANN, R. Influence of filter ventilation on the chemical composition of cigarette mainstream smoke. Analytica Chimica Acta, v. 657, n. 1, p. 36-44, 2010. Available from: https://doi.org/https://doi.org/10.1016/j.aca.2009.10.015 DOI: https://doi.org/10.1016/j.aca.2009.10.015

AFKHAMI, A.; BROWN, A.; SABOGAL-PAZ, L.P.; DIXON, D.; TERNAN, N.G.; DUNLOP, P.S.M. A comprehensive approach to simulation of cartridge filtration using CFD. Journal of Environmental Chemical Engineering, v. 11, n. 5, p. 110756, 2023. Available from: https://doi.org/https://doi.org/10.1016/j.jece.2023.110756 DOI: https://doi.org/10.1016/j.jece.2023.110756

ALALWAN, H.; ALMINSHID, A. An in-situ DRIFTS study of acetone adsorption mechanism on TiO2 nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 229, p. 117990, 2020. Available from: https://doi.org/10.1016/j.saa.2019.117990 DOI: https://doi.org/10.1016/j.saa.2019.117990

ALLAHKARAMI, E.; DEHGHAN MONFARED, A.; SILVA, L.F.O.; DOTTO, G.L. Toward a mechanistic understanding of adsorption behavior of phenol onto a novel activated carbon composite. Scientific Reports, v. 13, n. 1, p. 167, 2023. Available from: https://doi.org/10.1038/s41598-023-27507-5 DOI: https://doi.org/10.1038/s41598-023-27507-5

CHAN, K.H.; WRIGHT, N.; XIAO, D.; GUO, Y.; CHEN, Y.; DU, H.; YANG, L.; MILLWOOD, I.Y.; PEI, P.; WANG, J.; TURNBULL, I.; GILBERT, S.; AVERY, D.; KARTSONAKI, C.; YU, C.; CHEN, J.; LV, J.; CLARKE, R.; COLLINS, R.; PETO, R.; LI, L.; WANG, C.; CHEN, Z. Tobacco smoking and risks of more than 470 diseases in China: a prospective cohort study. The Lancet Public Health, v. 7, n. 12, p. e1014-e1026, 2022. Available from: https://doi.org/https://doi.org/10.1016/S2468-2667(22)00227-4 DOI: https://doi.org/10.1016/S2468-2667(22)00227-4

CHOE, C.; LADEMANN, J.; DARVIN, M.E. Depth profiles of hydrogen bound water molecule types and their relation to lipid and protein interaction in the human stratum corneum in vivo. Analyst, v. 141, n. 22, p. 6329-6337, 2016. Available from: https://doi.org/10.1039/C6AN01717G DOI: https://doi.org/10.1039/C6AN01717G

D’ALESSANDRO, O.; THOMAS, H.J.; SAMBETH, J.E. An analysis of the first steps of phenol adsorption-oxidation over coprecipitated Mn–Ce catalysts: a DRIFTS study. Reaction Kinetics, Mechanisms and Catalysis, v. 107, n. 2, p. 295-309, 2012. Available from: https://doi.org/10.1007/s11144-012-0470-0 DOI: https://doi.org/10.1007/s11144-012-0470-0

DENG, H.; YANG, F.; LI, Z. Rapid determination of 9 aromatic amines in mainstream cigarette smoke by modified dispersive liquid liquid microextraction and ultraperformance convergence chromatography tandem mass spectrometry. J Chromatogr A, v. 1507, p. 37-44, 2017. Available from: https://doi.org/10.1016/j.chroma.2017.05.056 DOI: https://doi.org/10.1016/j.chroma.2017.05.056

FERREIRA-APARICIO, P.; RODRÍGUEZ-RAMOS, I.; ANDERSON, J.A.; GUERRERO-RUIZ, A. Mechanistic aspects of the dry reforming of methane over ruthenium catalysts. Applied Catalysis A: General, v. 202, p. 183-196, 2000. Available from: https://doi.org/10.1016/S0926-860X(00)00525-1 DOI: https://doi.org/10.1016/S0926-860X(00)00525-1

GARRIGUES, J.M.; PéREZ-PONCE, A.; GARRIGUES, S.; GUARDIA, S. Fourier-transform infrared determination of nicotine in tobacco samples by transmittance measurements after leaching with CHCl3. Analytica Chimica Acta, v. 373, n. 1, p. 63-71, 1998. Available from: https://doi.org/https://doi.org/10.1016/S0003-2670(98)00387-0 DOI: https://doi.org/10.1016/S0003-2670(98)00387-0

GUO, L.; GAO, X.; GAO, W.; WU, H.; WANG, X.; SUN, S.; WEI, Y.; KUGUE,. Y.; GUO, X.; SUN, J.; TSUBAKI, N. High-yield production of liquid fuels in CO2 hydrogenation on a zeolite-free Fe-based catalyst. Chemical Science, v. 14, n. 1, p. 171-178, 2023. Available from: https://doi.org/10.1039/D2SC05047A DOI: https://doi.org/10.1039/D2SC05047A

GUO, W.; CHEN, J.; SUN, S.; ZHOU, Q. Investigation of water diffusion in hydrogel pore-filled membrane via 2D correlation time-dependent ATR-FTIR spectroscopy. Journal of Molecular Structure, v. 1171, p. 600-604, 2018. Available from: https://doi.org/https://doi.org/10.1016/j.molstruc.2018.06.048 DOI: https://doi.org/10.1016/j.molstruc.2018.06.048

HUA, Q.; LU, W.; ZHENG, S.; ZHANG, Y.; ZHANG, W.; WU, D.; SHEN, Y. Thermal release of nicotine and its salts adsorbed on silica gel. Thermochimica Acta, v. 656, p. 53-58, 2017. Available from: https://doi.org/https://doi.org/10.1016/j.tca.2017.08.013 DOI: https://doi.org/10.1016/j.tca.2017.08.013

HUANG, Z.; LIU, H.; ZHOU, W.J.; CAI, M.; SHI, K.; ZHAO, Y.; GUO, L. Cellulose acetate filter rods tuned by surface engineering modification for typical smoke components adsorption. E-Polymers, v. 24, n. 1, p. 2024. Available from: https://doi.org/10.1515/epoly-2023-0054 DOI: https://doi.org/10.1515/epoly-2023-0054

ILIC, I.; JOVIC-JOVICIC, N.; BANKOVIC, P.; MOJOVIĆ, Z.; LONČAREVIĆ, D.; GRŽETIĆ,I.; MILUTINOVIĆ-NIKOLIĆ, A. Adsorption of nicotine from aqueous solutions on montmorillonite and acid-modified montmorillonite. Science of Sintering, v. 51, p. 93-100, 2019. Available from: https://doi.org/10.2298/SOS1901093I DOI: https://doi.org/10.2298/SOS1901093I

JHA, P. Avoidable global cancer deaths and total deaths from smoking. Nature Reviews Cancer, v. 9, n. 9, p. 655-664, 2009. Available from: https://doi.org/10.1038/nrc2703 DOI: https://doi.org/10.1038/nrc2703

KAFTAN, A.; KUSCHE, M.; LAURIN, M.; WASSERSCHEID, P.; LIBUDA, J. KOH-promoted Pt/Al2O3 catalysts for water gas shift and methanol steam reforming: An operando DRIFTS-MS study. Applied Catalysis B: Environmental, v. 201, p. 169-181, 2017. Available from: https://doi.org/10.1016/j.apcatb.2016.08.016 DOI: https://doi.org/10.1016/j.apcatb.2016.08.016

LI, Y.; HECHT, S.S. Carcinogenic components of tobacco and tobacco smoke: A 2022 update. Food and Chemical Toxicology, v. 165, p. 113179, 2022. Available from: https://doi.org/https://doi.org/10.1016/j.fct.2022.113179 DOI: https://doi.org/10.1016/j.fct.2022.113179

PENG, S.W.; OUYANG, G.; CAO, X.W.; HOU. N.; YANG. G. Y.; YAN, F.; XU. F. X. Investigation on the forming quality and hardness of hollow filter rods using water vapor forming method. Journal of Mechanical Science and Technology, v. 37, n. 6, p. 3095-3101, 2023. Available from: https://doi.org/10.1007/s12206-023-0533-3 DOI: https://doi.org/10.1007/s12206-023-0533-3

SHI, K.; GUO, L.; ZHANG, W.; Jiang, Y.; Liu, K.; Li, M.; Xue, Z.; Sun, S.; Mao C. Tunable CO Dissociation Assisted by H2 over Cobalt Species: A Mechanistic Study by In-situ DRIFTS. ChemCatChem, v. 13, n. 23, p. 4903-4911, 2021. Available from: https://doi.org/10.1002/cctc.202101359 DOI: https://doi.org/10.1002/cctc.202101359

SONG, M.A.; BENOWITZ, N.L.; BERMAN, M.; BRASKY, T.M.; CUMMINGS, K. M.; HATSUKAMI, D.K.; MARIAN, C.; O’CONNOR,R.; REES, V.W.; WOROSZYLO, C.; SHIELDS, P.G. Cigarette Filter Ventilation and its Relationship to Increasing Rates of Lung Adenocarcinoma. J Natl Cancer Inst, v. 109, n. 12, p. 2017. Available from: https://doi.org/10.1093/jnci/djx075 DOI: https://doi.org/10.1093/jnci/djx075

SONG, Y.; LIU, Z.; SUN, Z.; DU, W.; WANG, Z.; HU, Z.; MA, M.; WANG, Z. Flow field analysis of cigarette filter through micro-CT-based geometries and CFD simulation. Heliyon, v. 10, n. 8, article e29253, 2024. Available from: https://doi.org/https://doi.org/10.1016/j.heliyon.2024.e29253 DOI: https://doi.org/10.1016/j.heliyon.2024.e29253

THUN, M.J.; HENLEY, S.J.; CALLE, E.E. Tobacco use and cancer: an epidemiologic perspective for geneticists. Oncogene, v. 21, n. 48, p. 7307-7325, 2002. Available from: https://doi.org/10.1038/sj.onc.1205807 DOI: https://doi.org/10.1038/sj.onc.1205807

WAN, J.Q.; HU,S.D.; CUI, C.; JI, P.; GU, L.; WANG, G.; TIAN, H.; GAO, P. Effect of cavity diameter on the mainstream smoke and sensory quality of cigarettes with circular cavity combined filter rods. Journal of Light Industry, v. 37, n. 4, p. 81-85,93, 2022. Available from: https://doi.org/10.12187/2022.04.011

WEN, Z.; GU, X.; TANG, X.; LI, X.; PANG, Y.; HU, Q.; WANG, J.; ZHANG, L.; LIU, Y.; ZHANG, W. Time-resolved online analysis of the gas- and particulate-phase of cigarette smoke generated by a heated tobacco product using vacuum ultraviolet photoionization mass spectrometry. Talanta, v. 238, p. 123062, 2022. Available from: https://doi.org/https://doi.org/10.1016/j.talanta.2021.123062 DOI: https://doi.org/10.1016/j.talanta.2021.123062

XU, X.; ZHENG, F.; GUO, L.S.; LI, M.M.; FANG, Z.Y.; LIU, J.Y.; CAI, M.D.; SUN, S.;DU, X.; SHI, P.W. Model smoke stream adsorption over cellulose acetate stick with three-dimensional temperature gradient by combining in-situ DRIFTS with infrared thermal imaging. Cellulose, v. 29, n. 3, p. 1883-1895, 2022. Available from: https://doi.org/10.1007/s10570-022-04415-x DOI: https://doi.org/10.1007/s10570-022-04415-x

ZAKI, M.I.; HASAN, M.A.; PASUPULETY, L. Surface Reactions of Acetone on Al2O3, TiO2, ZrO2, and CeO2: IR Spectroscopic Assessment of Impacts of the Surface Acid−Base Properties. Langmuir, v. 17, n. 3, p. 768-774, 2001. Available from: https://doi.org/10.1021/la000976p DOI: https://doi.org/10.1021/la000976p

ZENG, T.; LIU, Y.; JIANG, Y.; ZHANG, L.; ZHANG,Y.; ZHAO, L.; JIANG, X.; ZHANG, Q. Advanced Materials Design for Adsorption of Toxic Substances in Cigarette Smoke. Advanced Science, v. 10, n. 22, p. 2301834, 2023. Available from: https://doi.org/https://doi.org/10.1002/advs.202301834 DOI: https://doi.org/10.1002/advs.202301834

Publicado

2025-08-01

Como Citar

Huang, Z., Liu, H., Shi, K., Liu, J., Zhao, Y., Yin, Q., Cai, M., Guo, L., & Sun, S. (2025). ANÁLISE EXPERIMENTAL E NUMÉRICA DE DIFERENTES FILTROS DE CIGARRO COM CAVIDADES ESPECIAIS PARA ADSORÇÃO TÍPICA NO FLUXO DE FUMAÇA. Environmental Smoke, 8, 01–10. https://doi.org/10.32435/envsmoke-2025-0005

Edição

Seção

Artigos Completos

Dados de financiamento