FIXED OIL FROM PEQUI FRUIT (Caryocar coriaceum) PREVENTS LUNG CHANGES CAUSED BY VEHICLE POLLUTANTS
DOI:
https://doi.org/10.32435/envsmoke-2024-0007Keywords:
Pollution, Diesel exhaust particles, Caryocar coriaceum, Fatty acids, Respiratory systemAbstract
The exposure to diesel exhaust particles (DEP) in high-traffic environments is associated with significant alterations in the respiratory system. In parallel, it is assumed that the regular inclusion of compounds containing high levels of polyunsaturated fatty acids, such as pequi oil (Caryocar coriaceum), in the diet may help with disorders caused by these pollutants. The present work investigates the benefits of oral ingestion of fixed oil from Caryocar coriaceum (CC) on lung tissue and ventilatory mechanics in mice exposed to DEP, as well as its chemical composition. The CC, mainly composed of linoleic acid (49.13%), prevented the increase in the bronchoconstriction index and the infiltration of inflammatory cells in the pulmonary alveoli. Moreover, it was able to prevent changes in ventilatory parameters caused by DEP, such as airway resistance, tissue resistance, elastance, lung compliance, inspiratory capacity, and the area of the pressure-volume curve. Our findings demonstrated that the implementation of CC in the diet of mice exposed to DEP was responsible for preventing the establishment of histological and functional alterations in the respiratory system caused by these vehicular pollutants.
Downloads
References
ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Material Particulado em Suspensão na atmosfera – Determinação da concentração de partículas inaláveis pelo método do amostrador de grande volume acoplado a um separador inercial de partículas. 8p. (ABNT NBR 13412). 1995.
ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Material Particulado em Suspensão no ar ambiente – Determinação da concentração total pelo método do amostrador de grande volume. 10p. (ABNT NBR 9547). 1997.
ADAMS, R. P. Identification of essential oil components by gas chromatography/mass spectrometry, ed. 4.1. 2017. Available from: https://diabloanalytical.com/ms/essential-oil-components-by-
gcms/essential_oil_components_ebook.pdf. Accessed on: 1 abr. 2024.
ALMEIDA-BEZERRA, J. W; BEZERRA, J. J. L; SILVA, V. B. D; COUTINHO, H. D. M; COSTA, J. G. M. D; CRUZ-MARTINS, N; HANO, C; MENEZES, S. A; MORAIS-BRAGA, M. F. B; OLIVEIRA, A. F. M. D. Caryocar coriaceum Wittm. (Caryocaraceae): Botany, Ethnomedicinal Uses, Biological Activities, Phytochemistry, Extractivism and Conservation Needs. Plants, v. 11. 2022. Available from: https://doi.org/10.3390/plants11131685 DOI: https://doi.org/10.3390/plants11131685
ALVES, D. R. MORAIS, S. M; TOMIOTTO-PELLISSIER, F; MIRANDA-SAPLA, M. M; VASCONSELOS, F. R; SILVA, I. N. G; SOUSA, H. A; ASSOLINI, J. P; CONCHON-COSTA, I.; PAVANELLI, W. R; FREIRE, F. C. O. Flavonoid composition and biological activities of ethanol extracts of Caryocar coriaceum Wittm., a native plant from Caatinga biome. Evidence-Based Complementary and Alternative Medicine, v. 2017, p. 1-8, 2017. Available from: https://doi.org/10.1155/2017/6834218 DOI: https://doi.org/10.1155/2017/6834218
BICALHO M.; AMORIM E. Caryocar coriaceum (Caryocaraceae). Lista Vermelha da Flora Brasileira: Centro Nacional de Conservação da Flora/ Instituto de Pesquisas Jardim Botânico do Rio de Janeiro. 2021. Available from:
https://proflora.jbrj.gov.br/html/Caryocar%20coriaceum_2021.html. Accessed on: 1 abr. 2024.
BLASBALG, T. L; HIBBELN, J. R; RAMSDEN, C. E; MAJCHRZAK, S. F; RAWLINGS, R. R. Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. The American Journal of Clinical Nutrition, v. 93, n. 5, p. 950-962, 2011. Available from: https://doi.org/10.3945/ajcn.110.006643 DOI: https://doi.org/10.3945/ajcn.110.006643
CONCEA - CONSELHO NACIONAL DE CONTROLE DE EXPERIMENTAÇÃO ANIMAL (“NATIONAL COUNCIL FOR CONTROLLING ANIMAL EXPERIMENTATION”). Ministry of Science, Technology, and Innovation. Guide for the Production, Maintenance, or Use of Animals for Teaching or Scientific Research. 2013. Available from:
http://www.mct.gov.br/index.php/content/view/310553.html. Accessed on: 1 abr. 2024.
CALDER, P. C. Long-chain n-3 fatty acids and inflammation: potential application in surgical and trauma patients. Brazilian Journal of Medical and Biological Research, v. 36, n. 4, p. 433-446, 2003. Available from:
https://doi.org/10.1590/S0100-879X2003000400004 DOI: https://doi.org/10.1590/S0100-879X2003000400004
CALDER, P. C. Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? British journal of clinical pharmacology, v. 5, n. 3, p. 645-662, 2013. Available from: https://doi.org/10.1111/j.1365-2125.2012.04374.x DOI: https://doi.org/10.1111/j.1365-2125.2012.04374.x
CALDER, P. C. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, v. 1851, n. 4, p. 469-484, 2015. Available from: https://doi.org/10.1016/j.bbalip.2014.08.010 DOI: https://doi.org/10.1016/j.bbalip.2014.08.010
CATTANI-CAVALIERI, I; VALENCA, S. S., LANZETTI, M., CARVALHO, G. M. C., ZIN, W. A., MONTE-ALTO-COSTA, A., PORTO, L. C; ROMANA-SOUZA, B. Acute exposure to diesel-biodiesel particulate matter promotes murine lung oxidative stress by Nrf2/HO-1 and inflammation through the NF-kB/TNF-α pathways. Inflammation, v. 42, n. 2, p. 526-537, 2019. Available from: https://doi.org/10.1007/s10753-018-0910-8 DOI: https://doi.org/10.1007/s10753-018-0910-8
GONDIM, F. L; MOURA, M. F; FERREIRA, R. M; SERRA, D. S; ARAÚJO, R. S; OLIVEIRA, M. L. M; CAVALCANTE, F. S. À. Exposure to total particulate matter obtained from combustion of diesel vehicles (EURO 3 and EURO 5): effects on the respiratory systems of emphysematous mice. Environmental Toxicology and Pharmacology, v. 83, p. 1-8, 2021. Available from: https://doi.org/10.1016/j.etap.2021.103583 DOI: https://doi.org/10.1016/j.etap.2021.103583
GONDIM, F. L.; SERRA, D. S.; CAVALCANTE, F. S. Á. Effects of Eucalyptol in respiratory system mechanics on acute lung injury after exposure to short-term cigarette smoke. Respiratory physiology & neurobiology, v. 266, p. 33–38, 2019. Available from: https://doi.org/10.1016/j.resp.2019.04.007 DOI: https://doi.org/10.1016/j.resp.2019.04.007
GraphPad Prism version 7.00. GraphPad Software, San Diego, CA, USA. 2024. Available from: https://www.graphpad.com. Accessed on: 1 abr. 2024.
HANTOS, Z; DAROCZY, B; SUKI, B; NAGY, S; FREDBERG, J. J. Input impedance and peripheral inhomogeneity of dog lungs. Journal of Applied Physiology, v. 72, p.168–178, 1992. Available from: https://doi.org/10.1152/jappl.1992.72.1.168 DOI: https://doi.org/10.1152/jappl.1992.72.1.168
HARWOOD, J. L. Polyunsaturated fatty acids: conversion to lipid mediators, roles in inflammatory diseases and dietary sources. International Journal of Molecular, v. 24, 2023, Available from: https://doi.org/10.3390/ijms24108838 DOI: https://doi.org/10.3390/ijms24108838
HENDRYX, M; LUO, J; CHOJENTA, C; BYLES, J. E.Air pollution exposures from multiple point sources and risk of incident chronic obstructive pulmonary disease (COPD) and asthma. Environmental Research, v. 179, p. 1-6, 2019. Available from: https://doi.org/10.1016/j.envres.2019.108783 DOI: https://doi.org/10.1016/j.envres.2019.108783
HERRERA-VIELMA, F; VALENZUELA, R; VIDELA, L. A; ZÚÑIGA-HERNÁNDEZ, J. N-3 polyunsaturated fatty acids and their lipid mediators as a potential immune–nutritional intervention: A molecular and clinical view in hepatic disease and other non-communicable illnesses. Nutrients, v. 13, 2021. Available from: https://doi.org/10.3390/nu13103384 DOI: https://doi.org/10.3390/nu13103384
HIURA, T. S; KASZUBOWSKI, M. P; LI, N; NEL, A. E. Chemicals in diesel exhaust particles generate reactive oxygen radicals and induce apoptosis in mac-rophages. Journal of Immunology, v. 163, n. 10, p. 5582-5591, 1999. Available from: https://pubmed.ncbi.nlm.nih.gov/10553087/. Accessed on: 1 abr. 2024. DOI: https://doi.org/10.4049/jimmunol.163.10.5582
KAR, A; GHOSH, P; PATRA, P; CHINI, D. S; NATH, A. K; SAHA, J. K; PATRA, B. C. Clinical Nutrition Open Science, v. 52, p. 72-86, 2023. Omega-3 fatty acids mediated Cellular signaling and its regulation in Human Health. Available from: https://doi.org/10.1016/j.nutos.2023.10.004 DOI: https://doi.org/10.1016/j.nutos.2023.10.004
KHREIS, H; DE HOOGH, K; NIEUWENHUIJSEN, M. J. Full-chain health impact assessment of traffic-related air pollution and childhood asthma. Environment International, v. 114, p. 365-375, 2018. Available from:
https://doi.org/10.1016/j.envint.2018.03.008 DOI: https://doi.org/10.1016/j.envint.2018.03.008
LEDERER, D. J; MARTINEZ, F. J. Idiopathic pulmonary fibrosis. New England Journal of Medicine, v. 378, n. 19, p. 1811-1823, 2018. Available from: https://doi.org/10.1056/NEJMra1705751 DOI: https://doi.org/10.1056/NEJMra1705751
LIMA, R. M. Avaliação da qualidade do ar em um trecho urbano da cidade de Fortaleza - Ceará. 2015. 106 f. Thesis (Master's degree in Technology and Environmental Management) – Federal Institute of Ceará, Fortaleza, 2015. Available from: https://oasisbr.ibict.br/vufind/Record/BRCRIS_c910a0f536778ea4dc58337164cc576b. Accessed on: 1 abr. 2024.
MACIEL, T. C. M; MARCO, C. A; SILVA, E. E; SILVA, T. I; SANTOS, H. R; OLIVEIRA-ALCANTARA, F. D; CHAVES, M. M. Pequi (Caryocar coriaceum Wittm.) extrativism: Situation and perspectives for its sustainability in Cariri cearense. Acta Agronómica, v. 67, p. 238–245, 2018. Available from: https://doi.org/10.15446/acag.v67n2.62848 DOI: https://doi.org/10.15446/acag.v67n2.62848
NIH - NATIONAL INSTITUTES OF HEALTH. Guide for the care and use of laboratory animals. Bethesda: U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, 1985. (NIH Publication No. 85-23, revised). Available from:
https://grants.nih.gov/grants/olaw/guide-for-the-care-and-use-of-laboratory-animals.pdf. Accessed on: 1 abr. 2024.
RANA, S., SAXENA, M. R., MAURYA, R. K. A review on morphology, nanostructure, chemical composition, and number concentration of diesel particulate emissions. Environmental Science and Pollution Research, v. 29, p. 15432-15489, 2022. Available from: https://doi.org/10.1007/s11356-021-15999-5 DOI: https://doi.org/10.1007/s11356-021-15999-5
RIBEIRO, D. A; OLIVEIRA, L. G. S; MACÊDO, D. G; MENEZES, I. R. A; COSTA, J. G. M; SILVA, M. A. P; ALMEIDA-SOUZA, M. M. Promising Medicinal plants for bioprospection in a cerrado area of Chapada Do Araripe, Northeastern Brazil. Journal of Ethnopharmacol, v. 155, p. 1522–1533, 2014. Available from: http://dx.doi.org/10.1016/j.jep.2014.07.042 DOI: https://doi.org/10.1016/j.jep.2014.07.042
RIBEIRO, A. G; DOWNWARD, G. S; FREITAS, C. U; NETO, F. C; CARDOSO, M. R. A.; LATORRE, M. R. D. O; HYSTAD, P. Nardocci, A. C. Incidence and mortality for respiratory cancer and traffic-related air pollution in São Paulo, Brazil. Environmental Research, v. 170, p. 243-251, 2019. Available from: https://doi.org/10.1016/j.envres.2018.12.034 DOI: https://doi.org/10.1016/j.envres.2018.12.034
SAKAE, R. S; LEME A. S; DOLHNIKOFF, M.; PEREIRA, P. M; PATROCINIO, M; WARTH, T. N; ZIN, W. A; SALDIVA; P. H. N.; MARTINS, M. A. Neonatal capsaicin treatment decreases airway and pulmonary tissue responsiveness to methacholine. American Journal of Physiology-Lung Cellular and Molecular Physiology, v. 266, n. 1, p. 23-29, 1994. Available from: https://doi.org/10.1152/ajplung.1994.266.1.L23 DOI: https://doi.org/10.1152/ajplung.1994.266.1.L23
SERRA, D. S; SOUSA, A. M; ANDRADE, L. C. S; GONDIM, F. L; SANTOS, J. E. Á; OLIVEIRA, M. L. M; PIMENTA, A. T. Á. Effects of fixed oil of Caryocar coriaceum Wittm. Seeds on the respiratory system of rats in a short-term secondhand-smoke exposure model. Journal of Ethnopharmacology, v. 1, p. 15-22, 2020. Available from: https://doi.org/10.1016/j.jep.2020.112633 DOI: https://doi.org/10.1016/j.jep.2020.112633
SOUSA, A. M; GONDIM, F. L; SANTOS, G. R; MOURA, M. F; FERREIRA, R. M; SERRA, D. S; PIMENTA, A. T. Á; OLIVEIRA, M. L. M; CAVALCANTE, F. S. Á. Fixed oil derived from Caryocar coriaceum (pequi fruit) prevents tissue and functional alterations in the respiratory system induced household air pollution originating from biomass. Environmental Smoke, v. 6, p. 58-68, 2023. Available from: https://doi.org/10.32435/envsmoke-2023-0019 DOI: https://doi.org/10.32435/envsmoke-2023-0019
THOMPSON, M; ELLISON, S. L. R; WOOD, R. The International Harmonized Protocol for the proficiency testing of analytical chemistry laboratories (IUPAC Technical Report). Pure and Applied Chemistry, v. 78, p. 145-196, 2006. Available from: https://doi.org/10.1351/pac200678010145 DOI: https://doi.org/10.1351/pac200678010145
VOGEL, C. F., VAN-WINKLE, L. S., ESSER, C., HAARMANN-STEMMANN, T. The aryl hydrocarbon receptor as a target of environmental stressors–Implications for pollution mediated stress and inflammatory responses. Redox biology, v. 34, 2020 Available from: https://doi.org/10.1016/j.redox.2020.101530 DOI: https://doi.org/10.1016/j.redox.2020.101530
WAGERS, S; LUNDBLAD, L; MORIYA, H. T; BATES, J. H; IRVIN, C. G. Nonlinearity of respiratory mechanics during bronchoconstriction in mice with airway inflammation. Journal of Applied Physiology, v. 92, n. 5, p. 1802-1807, 2002. Available from: https://doi.org/10.1152/japplphysiol.00883.2001 DOI: https://doi.org/10.1152/japplphysiol.00883.2001
WAGERS, S; LUNDBLAD, L. K; EKMAN, M; IRVIN, C. G; BATES, J. H. The allergic mouse model of asthma: normal smooth muscle in an abnormal lung? Journal of Applied Physiology, v. 96, n. 6, p. 2019-2027, 2004. Available from:
https://doi.org/10.1152/japplphysiol.00924.2003 DOI: https://doi.org/10.1152/japplphysiol.00924.2003
WEIBEL, E. R. Morphometry: stereological theory and practical methods. In: GIL, J. (org). Models of lung disease: microscopy and structural methods. Florida: CRC Press, 1990. p. 54.
WORLD HEALTH ORGANIZATION (WHO). Health topics Air pollution. 2016. Available from: http://www.who.int/topics/air_pollution/en/. Accessed on: 1 abr. 2024.
ZHANG, Z., DONG, R., LAN, G., YUAN, T., TAN, D. Diesel particulate filter regeneration mechanism of modern automobile engines and methods of reducing PM emissions: A review. Environmental Science and Pollution Research, v. 30, p. 39338-39376, 2023. Available from: https://doi.org/10.1007/s11356-023-25579-4 DOI: https://doi.org/10.1007/s11356-023-25579-4
ZIN, W. A; SILVA, A. G; MAGALHÃES, C. B; CARVALHO, G. M; RIVA, D. R; LIMA, C. C; LEAL-CARDOSO, J. H; TAKIYA, C. M; VALENÇA, S. S; SALDIVA, P. H. N; FAFFE, D. S. Eugenol attenuates pulmonary damage induced by diesel exhaust particles. Journal of Applied Physiology, v. 112, n. 5, p. 911-917, 2012. Available from:
https://doi.org/10.1152/japplphysiol.00764.2011 DOI: https://doi.org/10.1152/japplphysiol.00764.2011
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Fladimir de Lima Gondim, Marcelle Ferreira Moura, Allison Matias de Sousa, Ruth Mesquita Ferreira, Gilvan Ribeiro dos Santos, Ana Raquel Rodrigues de Oliveira, João Henrique Silva Luciano, Daniel Silveira Serra, Francisco Sales Ávila Cavalcante, Mona Lisa Moura de Oliveira, Antônia Torres Ávila Pimenta
This work is licensed under a Creative Commons Attribution 4.0 International License.
The copyright for manuscripts published in Environmental Smoke belongs to the author, with first publication rights for the journal. The published articles are of total and exclusive responsibility of the authors.