INTERNAL ANATOMY OF THE OLIVE TURTLE (Lepidochelys olivacea)
ANATOMIA INTERNA DA TARTARUGA OLIVA (Lepidochelys olivacea)

Gil Dutra Furtado¹; Rute Cavalcante da Silva²; Patricia Aguiar de Oliveira³; Martin Lindsey Christoffersen⁴

Abstract

In this article, the internal organs of an olive sea turtle (Lepidochelys olivacea) were described. The autopsy was based on a methodological guide of “Virchow”. The Cardiorespiratory, Digestive, Liver, Gallbladder, Pancreas, Spleen, Genito-Urinary System, and Endocrine System systems were observed. This description of the internal organs aimed to provide practice in anatomical identification and to provide didactic information for the students of the course in veterinary medicine.

Keywords: Chelonian. Olive turtle. Veterinary Medicine.

Resumen

Se describieron los órganos internos de una tortuga de olivo (Lepidochelys olivacea). Durante la autopsia de este cheloniano, utilizamos la metodología basada en el guión predeterminado de la metodología “Virchow”. Se observaron los sistemas cardiorespiratorio, digestivo, hepático, vesicular, páncreas, bazo, sistema genitourinario y sistema endocrino. La descripción de los órganos internos tenía como objetivo proporcionar una práctica de identificación anatómica, así como brindar información didáctica a los estudiantes del curso de medicina veterinaria.

Introduction

Human activity has resulted in the decline of populations of marine turtles worldwide. Degradation of the natural ecosystem, intense climatic oscillations, wounds caused during encounters with aquatic vessels, accidental deaths during commercial fishing, among other factors, are examples of what is happening to these animals nowadays (Alvarenga et al., 2018).

Understanding the importance of these animals for the preservation of the aquatic environment lead us to question the environmental effects of mankind on the remaining populations. The production of a management program for the conservation of marine turtles thus becomes important and necessary (Sales, 2017).

It is presently known that marine turtles help maintaining adequate levels of marine algae and positively influence the functioning of coral reefs (Sales, 2017).

The aim of this article is to describe the internal anatomy of an olive marine turtle necropsied by students of veterinary medicine at the University Center Mauricio de Nassau (UNINASSAU/PB).

Materials and Methods

The necropsy of the marine turtle Lepidochelys olivacea was done in the Animal Anatomy Lab, University Center Mauricio de Nassau (UNINASSAU - PB). The activities were recorded by the students participating in the project “Veterinary Experience at Paraíba Aquarium. Veterinary actions, necropsy of Chelonida, and university extension activities”.

This project, through the partnership signed between the aquarium and the educational institution a few years ago, allows the visitation to be carried out in a guided format by the aquarium technician in conjunction with the class teacher, so as to be a class experienced by the knowledge and actions of the caretakers in relation to the management, nutrition and behavior of the animals that are either on display in the visitation circuit or in the rehabilitation centre of marine species, which in this case, the “patient” animals are rescued and after recovery, are reintroduced into the nature. In

Results and Discussion

The marine olive turtle is a chelonian, in other words, “a reptile provided with a hull” (O’Malley, 2005). Oceanic turtles are ectothermic animals, with compact bodies, using their limbs as natatory devices, having a non-retractil neck, and do not have teeth. The hull is formed by a dorsal carapace and a ventral plastron, both being bone structures covered by corneal plates and serving to protect the internal organs (Boyer and Boyer, 2006; Cubas and Baptistotte, 2007).

The carapace, plastron and skin of the animal were in good condition, without abnormal growths, with only the presence of some barnacles.

The internal organs of the olive turtle are located in the coelomic cavity, placed between the plastron and the carapace, both ventrally and dorsally. Within this cavity lie the heart, the tireoid, the final portion of the trachea, the lung, the liver, the gallbladder, the spleen, the esophagus, the stomach, the small intestine, the large intestine, the pancreas, the kidneys, the bladder, the adrenals, the testicles, the ovaries, and the oviduct (Boyer and Boyer, 2006; Cubas and Baptistotte, 2007).
Cardiorespiratory System

Inspecting the cardiovascular system we find: the heart, that presented a smooth surface, a firm consistency, and a tanned coloring; the lung had a wrinkled surface, with a friable consistency and being the color of coffee; the tracheia had a smooth lumen and was white.

Being a reptile, the olive turtle is characterized as an ectothermal animal, depending on the ambient temperature in order to regulate its internal temperature. The cardiovascular system is thus very important and depends upon several factors that will contribute to determine the cardiac frequency (CF), such as the size of the chelonian, the ambient temperature, the saturation of oxigen in the blood, the respiratory ventilation, the postural or gravitational stress, the hemodynamic balance, and the body sensory stimulus (KIK and MITCHELL, 2005; MITCHELL, 2009).

Observing the opened body of the chelonian, the heart is located along a median line, covered by the pericardium (O’MALEY, 2005). The heart has three cardiac lobes, of which two are atria and one represents the ventriculus. The ventriculus has a compact and spongy miocardium, while the atria have thin walls separated by a septum (KIK and MITCHELL, 2005; VITT and CALDWELL, 2009).

Three subchambers are observed in the ventriculus, the cavum pulmonale (that extend cranially to the pulmonary artery), the cavum arteriosum and the cavum venosum (situated dorsally and that receive blood from the right and left atria, being connected by the interventricular canal) (KIK and MITCHELL, 2005).

In the respiratory system, the rate of oxigen consumption is smaller than in mammals, and this difference explains the low metabolic rate of chelonians (MOSLEY, 2005).

The trachea is formed by complete cartilaginous rings. The pair of spongy lungs occupy a large space in the dorsal half of the body cavity. They are surrounded by a pleural cavity, being separated from the ventral cavity only by the viscera and by a thin, non-muscular, post-pulmonary septum (O’MALEY, 2005).

Digestive System

When exploring the digestive system, we have seen that the oral cavity had a smooth mucosa, of a yellowish color, without any food contents; the oesophagus had a rough mucosa, a yellow color, and with sand found in its interior; the following digestive system corresponds to the beginning of the stomach and has a smooth mucosa, yellowish in color, without our being able to identify its contents; the remaining part of the stomach had a smooth mucosa, being rose-colored, and its contents were also not identified; the small intestine had a smooth mucosa, was rose-colored, without contents; the large intestine had a smooth mucosa, being rose-colored, and containing some fecal material.

The gastrointestinal tract of the turtle includes the mouth, oral cavity, oropharyngeal cavity, oesophagus, stomach, small intestine, large intestine, ending in a cloaca (MITCHELL and DIAZ-FIGUEROA, 2005).

The oesophagus is a tubular organ, membranomuscular, with longitudinal folds along its mucosa, that serve to connect the oropharyngeal region and the expanded portion of the stomach (PIZZUTTO et al., 2001; MAGALHÃES, 2010).

The stomach is divided into the cardiac region, ground region, and pyloric region, that have the function of storing and digesting food by enzymatic reactions and mechanical processes (MITCHELL and DIAZ-FIGUEROA, 2005; PIZZUTTO et al., 2001; PINTO, 2006; MAGALHÃES et al., 2010).

The organ known as the small intestine is composed by a long, thin, tube, enovelated along a portion of its length (OLIVEIRA et al., 1996; PINTO, 2006; CUBAS and BAPTISTOTTE, 2007; MAGALHÃES, 2010).

The main place for the absorption of nutrientes lies at the end of the stomach and beginning of the duodene (PIZZUTTO et al., 2001). Because the olive turtle is carnivorous, feeding on salps, fish, molluscs,
crustaceans, bryozoans, tunicates, jelly-fish and fish eggs, the intestine tends to be shorter than in herbivorous turtles (DIAZFIGUEROA and MITCHELL, 2006; CRUZ, 2017).

Liver, gallbladder, pancreas, and spleen

Examination of the liver indicated a wrinkled surface of fragile consistency, the color of coffee; the gallbladder was whole and contained bile; the pancreas showed no alterations and the spleen had a wrinkled surface, a firm consistency, and was coffee-colored. The liver and pancreas are adhered to the stomach and duodene. Their function is to metabolize fats, proteins and glycogen, as well as to produce uric acid and adherent factors (MOSLEY, 2005; HERNANDEZ-DIVERS and COOPER, 2006; VITT and CALDWELL, 2009).

In cheloniens, the liver represents 3 to 4% of the weight of the animal, being large and is located ventrally to the lungs. This organ has two lobes that surround the gallbladder on the right side (O’MALEY, 2005; HERNANDEZ-DIVERS and COOPER, 2006; CUBAS and BAPTISTOTTE, 2007; VITT and CALDWELL, 2009).

The pancreas is a small and diffuse gland associated with the stomach and duodene (DIAZFIGUEROA and MITCHELL, 2006; VITT and CALDWELL, 2009).

The gallbladder is associated with the stomach and pancreas on the dorsal mesenterium. It is usually ovoid, small, being reddish-brown in color (GARNER, 2006; HERNANDEZ-DIVERS, 2006).

Genito-Urinary System

The kidneys had a wrinkled surface, of fragile consistency, yellow in color; the bladder had a glandular mucosa, was rose-colored, with no contents; the gonads had a smooth surface, a firm consistency, and a yellow color.

The urinary tract of the olive turtle consists in a pair of kidneys, both connected to the bladder by a pair of ureters. The ureters are also connected to the cloaca by the urethra. The observed reproductive system includes the ovaries (but they could also be the testicles), that are connected to the urinary tract by the cloaca (HOLZ, 2006).

The kidneys of the olive turtle are located in the coelomic cavity, cranially relative to the pelvic girdle. They are flattened, lobulated, symmetrical, and located close to the gonads.

The bladder of the olive turtle has a thin and distensible wall (CANNY, 1998; REAVILL and SCHMIDT, 2010). Variations in the outer morphology have been described for different species (CANNY, 1998).

The paired gonads are located near the kidneys (BOYER and BOYER, 2006). They are well defined, and the male and female gonads are distinguished. They produce gametes and sex hormones (VITT and CALDWELL, 2009). The ovary consists of a sac with thin walls, having the germinal cells between the inner and outer walls of the ovary. The follicles occur in great numbers, forming the visible part of the ovaries in gestational females (DENARDO, 2006; CUBAS and BAPTISTOTTE, 2007; VITT and CALDWELL, 2009). There is also an oviduct, divided into infundibulum, magnum, and istmus, that have the function of forming the eggs (BOYER and BOYER, 2006; CUBAS and BAPTISTOTTE, 2007).

Endocrine System

The endocrine system is formed by numerous glands dispersed over the entire body (VITT and CALDWELL, 2009).

During the necropsy it was not possible to identify the thyroid gland. The adrenal glands showed no alterations.

As well as the pancreas and the gonads, organs that belong to the endocrine system, the thyroid is located close to the cardiac base (GARNER, 2006; RIVERA and LOCK, 2008; VITT and CALDWELL, 2009).

The thyroid gland acts on reproduction, growth, development, endocrine functions, and metabolic rate (RIVERA and LOCK, 2008; VITT and CALDWELL, 2009). The adrenals are pairs of bilateral, elongated organs, located in front of the kidneys in reptiles, having two types of tissues, the cortical and the medular, that have distinct functions. The medular portion produced adrenaline and noradrenaline, that affect the blood flow to the head, liver, kidneys, and muscles, particularly under stress reactions. The cortical tissue produces a variety of steroid hormones (VITT and CALDWELL, 2009).
4 Conclusion

With the description of the internal organs of the marine olive turtle (*Lepidochelys olivacea*), students had the opportunity of understanding the physiology of the chelonian, as well as profiding practice in anatomical identification and bringing didactic information for the students in the course of veterinary medicine. This necropsy was based on the technique of the predetermined sequence of “Virchow”, which permitted the observation of the Cardiorespiratory System, the Digestive System, the Liver, the Gallbladder, the Pancreas, the Spleen, the Genito-Urinary System, and the Endocrine System.

Acknowledgement

We thank the company “Paraíba Aquarium” for their contribution and partnership in this technico-scientific development, as well as for their actions towards Environmental Education and for the Preservation of the Marine Environment. The sênior author (M. L.C.) is supported by a productivity grant from Conselho Nacional de Pesquisas.

References


CRUZ, D. N. Avaliação do desenvolvimento de filhotes de tartaruga oliva (*Lepidochelys olivacea*) submetidas à enriquecimento ambiental. TCC (Trabalho de Conclusão de Curso) - FACULDADE PIO DÉCIMO. ARACAJU - SE, p. 36. 2017.


KIK, M.J.L.; MITCHELL M.A. Reptile cardiology: a review of anatomy and physiology, diagnostic...


